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SUMMARY

A numerical study of the turbulent air flow in a trench trap and the turbulent flow around a permeable sand fence
is reported in this paper. The two-dimensional modifiedk–e turbulence model proposed by Kato and Launder is
used to predict the turbulent characteristics of the air flow. The discretization method for the governing equations
is the three-step Taylor/Galerkin finite element method proposed by the authors. For the flow in a trench trap the
numerical results are compared with experimental data obtained under realistic conditions using a large wind
tunnel. For the air flow around a permeable sand fence a pressure loss model is used to represent the effect of the
porosity of the fence on the flow field.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The coastal areas in Japan are highly utilized for economic purposes, e.g. industry, farming, traffic,
recreation and so on. These areas are frequently damaged by intruding wind-blown sand from a
neighbouring sandy beach and therefore studies of countermeasures have been performed by many
researchers to harness available knowledge for the protection of coastal areas against wind-blown
sand damage.1,2 In order to provide effective and economic protection against wind-blown sand
damage, the countermeasure illustrated in Figure 1 has been presented by Hotta.3 The main point of
this countermeasure is that wind-blown sand is caught by a trench trap located beside the foot of an
enbankment and the sand caught in the trench is washed away by seawater through a drain. To
investigate the efficiency of catching wind-blown sand by a trench, we have performed experiments
in a large wind tunnel with various aspect ratios of the trench. In this paper those experimental results
are compared with numerical results obtained based upon the modifiedk–e turbulence model.

The other objective of this study is the investigation of the efficiency of catching wind-blown sand
by a sand fence and a composite of a fence with an embankment. Several experimental and
observational studies have been performed in the last few decades.4,5 In those investigations,
however, the primary focus is on the movement of the sand bed and only a few have discussed the
turbulent air flow around a sand fence. Since the motion of wind-blown sand is mainly governed by
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the wind flow itself, we performed numerical simulations of the air flow around a sand fence,
including the effect of permeability in the computation. To includethe effect of the permeability of
anobstacle in a flow field in thecomputation,Kawamoto andTanahashi6 haveusedErgun’sequation
for the numerical estimation of the body force inducedby the small-scale flow around pebbles.
Toshigamiet al.7 havepresentedtheuseof thepressurelossterm in thenumerical simulation of the
flow around an automatic guidedvehicle. In this modelling the pressureloss term is addedto the
momentumequation as a supplementarybody force term. Both Ergun’s equation and the pressure
loss term are proportional to the squareof the velocity, but Ergun’s equationis more complicated
than the pressurelossmodelbecause it includes someconstantsdefinedby experiments.Therefore
we selectedto usethepressurelossmodel for thenumericalsimulationsof theair flow around a sand
fence including permeability effects.

Eventhoughmanyturbulent flow simulationshavebeenpresentedin theliterature,theselectionof
theturbulencemodelis still important in numerical simulations.In this papera k–e model is usedfor
the numerical simulation of the turbulent flow, since the presentcalculation is limited to two-
dimensional computation. Many calculationsof turbulent flows which usea k–e turbulence model
havebeenpresentedin conjunction with thefinite differencemethod,finite volumemethodandfinite
elementmethod.8–10According to the literature, thestandard k–e turbulencemodel givesa very poor
prediction of the turbulent characteristics of flows when excessive levels of turbulent energy are
calculatedin thecomputation(seee.g.Reference11). This causes a too high turbulentviscosity and
consequently the computed results becomeunrealistic. To overcome this problem, a number of
modifiedk–e turbulencemodels havebeenproposedby severalauthors.9–11 In this studywe usedthe
modified k–e turbulence model proposedby Kato and Launder11 becauseof its simplicity and
efficiency.Detailsof this aredescribed in the next section.

2. THE TURBULENCE MODEL

Following conventionalturbulentflow analysis, the equation of continuity, the Reynolds-averaged
Navier–Stokes equation and the k–e modelling equations for time-dependent, incompressible
turbulentflow are

Figure1. Illustration of countermeasureagainstwind-blown sanddamage3
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HereUi andP arethelocal time-averaged velocity componentsandpressurerespectively,k ande are
theturbulent kinetic energy andits dissipationraterespectively, n is thekinematicviscosity, nt is the
turbulenteddyviscosityandG is theturbulenceproduction term.Thevaluesof theconstants Cm, Ce1,
Ce2, sk andse usedin the turbulencemodel are0�09, 1�44, 1�92, 1�0 and1�3 respectively.8

Theseformulations,however,areknown to give very poorpredictionsof turbulent characteristics
when excessive generation of turbulent energyleadsto a too high turbulentviscosity.To overcome
this, Kato and Launder11 have presented a modified k–e model. Let the dimensionlessstrain
parameterS andvorticity parameterO be
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From equation (6) it is easily verified that the energyproduction term is rewrittenas

G � ntS
2
: �9�

Near astagnationpoint thevery high valueof S leadsto excessivelevelsof G. However,thevorticity
parameterO neara stagnation point becomesnearly equalto zero,since the deformation is nearly
irrotational.Thusthe replacement

G � ntSO �10�

gives a substantial diminution of G in the regionof a stagnationpoint. This ideahasbeenfound to
give a satisfactory prediction in thecomputationof turbulent flows.11 Themodification is no panacea
for the ills of the Bousinessqstress–strainhypothesis,but it doesgreatly improve the behaviourin
some flows.
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3. BOUNDARY CONDITIONS

In typical problemssimulatedby the k–e model, thewall function methodproposedby Launderand
Spalding8 is used.Accordingto this method,thevelocity profile in theturbulent boundary layernear
a smoothwall gives the following slip tangential velocity boundaryconditionsalongthe wall:

u� � y� when y� < 11�6; �11�
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1
k

ln�9y�� when y� � 11�6; �12�

u� � Ut=u
�
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HereUt andhw arethetangentialvelocity componentalong thewall andthemeshlength respectively
(seeFigure2), k is von Karman’sconstant, takento be0�41, andthe friction velocity u

�
is obtained

from the log-law velocity profile
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where UN is the tangential velocity componentalongthe wall asdescribedin Figure2. The normal
velocity componentUn is alsospecifiedas

Un � 0 �15�

on thewall boundary. Theboundaryconditionsfor k ande areimposed local equilibrium conditions
nearthe wall representedas
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At the inlet, Ui, k ande are imposed as

Ui � Ûi; k � k̂; e � ê; �17�

where a ‘hat’ denotesa given value on the boundary. At the exit the traction-free condition is
assumed for the meanflow quantities andthe normal gradients of k ande areimposedaszero.The
boundary conditionsstatedabovecanbe expressedas
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where ni is the unit vector of the direction cosine.

Figure2. Boundaryconditiondefinedby wall function
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4. THREE-STEPTAYL OR=GALERKIN METHOD

The discretization strategy usedin this paperis the three-step Taylor=Galerkin method.12,13 In this
strategy the pressurePoissonequation is derived in the following manner.Let Ui be the known
variablesof the velocity field at time tn

� tnÿ1
� Dt (n � 1; 2; . . .), whereDt is the time increment.

Thentheunknown velocity variable Un�1
i canbecalculated from thediscretizedReynolds-averaged

Navier–Stokesequation that is discretized in time by the forward Euler finite differencescheme:
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The incompressibility constraint(1) is forced to be satisfied in the n� 1 time stageas
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Af ter taking the divergenceof both sides of (19) then substituting (20), the following pressure
Poissonequation canbe derived:
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The boundary conditions for this are

Pn�1
� P̂;

@Pn�1

@xi
� ĝi: �22�

Once thepressurefield hasbeencalculatedfrom (21), thevelocity Un�1
i canbecomputedfrom (19),

which canbe treatedasa convection–diffusion equation.
Many solution techniques for Burgers-type equations have been presentedin the last decade,

especially for the convection-dominatedflow situation.14– 16 The Taylor=Galerkin methodis oneof
thesolutionstrategiesfor convection-dominatedflow thatwasfirst presentedby Selminet al.17 This
methodprovidesa third-order-accurateresult in spaceandtime with goodstability whentheCourant
number is less than1�0. Theadvantageof usingtheTaylor=Galerkinmethod is that thespecification
of special computational parameters, often required in other stabilized strategies so that the
computation may be stable, is not required at all. However, this method includes third-order
derivativetermsandthis is undesirable for linearinterpolationfunctions.We havethereforeproposed
a three-stepTaylor=Galerkinmethodwhich doesnot havehigher-order derivative termsbut retains
thebenefitobtainedfrom theoriginal Taylor=Galerkin method.Details of thepresentmethodcanbe
found in Reference13.

By making use of the three-step Taylor=Galerkin method, the momentum equation, pressure
Poissonequation andk- ande-equations canbe discretizedasfollows.
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In theseformulations the variables superscripted n� 1=3 and n� 2=3 standfor the intermediate
variables of corresponding variables.The use of the standard Galerkin methodwith the bilinear
isoparametricfinite elementyields the following finite element formulations.
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HereM , K , S andH are the mass matrix, convection matrix, diffusion matrix andgradientmatrix
respectively.The line integral termsto betreatedasthenatural boundary conditionsareomitted.The
proper treatmentof the naturalboundaryconditionsis discussed in Reference18.

5. RESULTS AND DISCUSSION

5.1. Flow in a trench trap

In order to investigatethe flow behaviour in a trench trap, experimentswerecarriedout usinga
blow-off type of wind tunnel which was specially designed for wind-blown sandat the Central
ResearchInstitute of Electronic Power Industry, Abiko, Japan. The wind tunnel hasa test section
110 cm high,100 cm wide and20 m long.Thewind speedis variablefrom 3 to 30 m sÿ1, controlled
by thefrequencyof a rotary fan. An ultrasonic anemometerarraywith 15 anemometerswasusedfor
measuringthewind speed. Thetrenchdepthis fixed asH� 20 cm in theexperiments andthe inflow
wind speedswereset to 5, 8 and15 m sÿ1. The Reynolds numbersof the experiments wereabout
76104, 1�16 105 and26105 respectively. Experimentswith trenchaspectratiosB=H� 2, 4, 6, 8
and10 werecarried out. The definition of the trenchaspectratio anda sketchof the computational
domain areillustratedin Figure 3. In the numerical simulation the Reynoldsnumberis fixed as105

andsimulationswith aspectratosB=H� 4 and6 wereexamined.In thecomputationfor B=H� 4 we
haveusedthe two finite element meshesshownin Figure 4 to checkthe effect of meshrefinement.
MeshA in Figure4 has8365 nodesand8160elementsandbecomesgradually finer towardsthewall
andbottomof the trenchtrap. MeshB has12,425nodesand12,160elements andis alsogradually
refined towardsthebottom,butnot refined at thelevel of thebottomof thetrenchtrap. Figure5 and6
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Figure3. Definition sketchof computationaldomainandaspectratio of trench(B=H)

Figure4. Finite elementmeshesfor B=H� 4: (a) meshA (8365nodesand8160elements);(b) meshB (12,425nodesand
12,160elements)

Figure5. Streamlines of meanvelocity field computedusing(a) meshA and(b) meshB (Re�105, B=H�4)
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showthe computedstreamlinesanddistributions of turbulentkinetic energy respectively using the
two meshes.No cleardifferenceis seenbetweentheresults of thedifferentmeshes.Figure7 showsa
comparisonof the velocity magnitudejUi j obtained by experimentsandnumerical simulations for
B=H� 4. The magnitudesof thevelocity profilesarenormalizedby theinflow wind speedvalue.The
mainstreamvelocity profilesof experimentsandsimulationsarein goodagreementwith eachother.
However, thevortex in thetrenchcomputednumericallyis ratherlarge thanthatof experiments.This
is presumed to be caused by the lack of a three-dimensional effect of the flow field in the present
numerical simulation. Thefinite element meshfor B=H� 6 is shownin Figure 8(a)andthecomputed
streamlinesin thetrenchareshownin Figure 8(b).Because theaspect ratio of thetrenchhaschanged
from 4 to 6, the vortex centreof the mainstream in the trenchhasmoved downstream. Figure8(c)
shows the same comparisonasFigure 7 for B=H� 6. The computed results are in goodagreement
with theexperimentalresultsin the mainstream,but thecomputedvortex in the trenchis also larger
thanthat of experiments.The same reasonasin the caseof B=H� 4 is considered responsible.

Figure6. Distributionsof meanturbulentkinetic energycomputed using(a) meshA and(b) meshB (Re�105, B=H�4)

Figure7. Comparisonof jUi j for B=H�4: d, experiment; ————, numericalresult
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5.2. Flow aroundpermeable sandfences

As mentioned previously, the pressure loss modelling presentedby Toshigami et al.7 hasbeen
utilized to include the permeability effect of the sand fence in the numerical computation. The
pressurelossterm usedin this study is definedby the equations

F �

DP

Dxe
; DP �

K

2
jUjjUj; �42�

whereDxe is themeshlength of fence elementsandK is thecoefficient of resistance calculatedfrom

K � CS
1 ÿ a

a2
: �43�

Herea is the porosityof the fence under consideration andCS is a coefficient determined from the
shapeof thefenceandtheReynoldsnumberof theflow. In this study, CS is fixedas1�3. Thepressure
lossterm is addedto the momentum equation asa supplementarybody force term. A sketch of the

Figure 8. Finite elementmeshand computedresults(Re� 105, B=H� 6). (a) Finite elementmesh(8365 nodesand 8160
elements).(b) Streamlinesof meanvelocity field. (c) Comparisonof jUi j for =B=H�6:d, experiment; ————, numerical

result
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computationaldomain is shown in Figure 9. Figure 10 showsthe finite elementmeshusedin this
computation. The total numbers of nodesand elements are 11,476and 11,250respectively. The
simulationswerecarriedout with variousvaluesof theporosityof the fence,a, andtheheight of the
fence, h. The Reynolds number of all cases is imposed asRe� 105. The computed streamlinesand
distributionsof turbulentkinetic energy of eachcaseareshownin Figures11–14.

The flow field doesnot changemuch when the porosity of the sandfenceis changed. A drastic
changein flow canbeobserveduponchanging theheightof thefence.This meansthat thefrequency
of vortex shedding from the edge of the embankment is changingowing to the changein the
resistanceforce of the fence. Another observationis that the changein the frequencyof vortex
shedding changes the distribution of turbulent kinetic energy, especially near the slope of the
embankment, wherea small recirculationareaof flow canbeobserved.This meansthat theturbulent
viscosity computedfrom themodifiedk–e model is notproducing a toohigh turbulent viscosity in the
computationof thecounter-gradientpressureflow, whereas thestandard k–e model alwaysproduces
an unrealistic turbulentviscosity. Therefore,the replacement of the production term G by (10) is
working successfully.

6. CONCLUSIONS

Numerical simulationsof the turbulent flow in a trenchtrap andthe flow around a permeablesand
fence werecarriedout by thethree-stepTaylor=Galerkin finite elementmethodin conjunction with a

Figure9. Definition sketchof computationaldomainof air flow aroundsandfence

Figure10. Finite elementmesh(11,476nodesand11,250elements)

AIR FLOW AROUND PERMEABLE SAND FENCES 1301

# 1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291–1306(1997)



Figure11. Computedstreamlines(Re� 105): (a) a� 1�0 (corresponding to caseof no fence);(b) a� 0�5, h�0�2, l �0�0; (c)
a�0�3, h�0�2, l �0�0
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Figure12. Distributionsof k (Re� 105): (a) a�1�0; (b) a�0�5, h�0�2, l �0�0; (c) a� 0�3, h� 0�2, l � 0�0
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Figure13. Computedstreamlines(Re� 105): (a) a� 1�0 (corresponding to caseof no fence);(b) a� 0�5, h�1�0, l �0�0; (c)
a�0�3, h�1�0, l �0�0
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Figure14. Distributionsof k (Re� 105): (a) a�1�0; (b) a�0�5, h�1�0, l �0�0; (c) a� 0�3, h� 1�0, l � 0�0
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modified k–e turbulencemodel. In thecomputationof theair flow in a trenchtrap thecomputedand
experimentalresults arepractically in goodagreementwith eachother.For engineeringpurposesthe
aboveshowsthat the presentmethod is applicable to the problem discussed here. However, 2D
computation cannotpredict the flow situation exactly so far. 3D computation is required in the
numerical simulationof thestrict behaviourof theturbulent flow situation. In thecomputation of the
air flow around apermeablesandfencethepressurelossmodelling works reasonablywell. Theeffect
of introducing the productionterm proposed by the modifiedk–e turbulencemodel is alsoverified.

Three-dimensional computations, comparisonof the computed results around a sandfencewith
experimentsand flow analysisaround the whole countermeasure illustrated in Figure 1 are future
subjectsof this study.
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