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SUMMARY

A numerical study of the turbulent air flow in a trench trap and the turbulent flow around a permeable sand fence
is reported in this paper. The two-dimensional modiked turbulence model proposed by Kato and Launder is

used to predict the turbulent characteristics of the air flow. The discretization method for the governing equations
is the three-step Taylor/Galerkin finite element method proposed by the authors. For the flow in a trench trap the
numerical results are compared with experimental data obtained under realistic conditions using a large wind
tunnel. For the air flow around a permeable sand fence a pressure loss model is used to represent the effect of the
porosity of the fence on the flow fieldC)1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The coastal areas in Japan are highly utilized for economic purposes, e.g. industry, farming, traffic,
recreation and so on. These areas are frequently damaged by intruding wind-blown sand from a
neighbouring sandy beach and therefore studies of countermeasures have been performed by many
researchers to harness available knowledge for the protection of coastal areas against wind-blown
sand damag®? In order to provide effective and economic protection against wind-blown sand
damage, the countermeasure illustrated in Figure 1 has been presented b/ Hiettanain point of

this countermeasure is that wind-blown sand is caught by a trench trap located beside the foot of an
enbankment and the sand caught in the trench is washed away by seawater through a drain. To
investigate the efficiency of catching wind-blown sand by a trench, we have performed experiments
in a large wind tunnel with various aspect ratios of the trench. In this paper those experimental results
are compared with numerical results obtained based upon the mokifig¢drbulence model.

The other objective of this study is the investigation of the efficiency of catching wind-blown sand
by a sand fence and a composite of a fence with an embankment. Several experimental and
observational studies have been performed in the last few detddesthose investigations,
however, the primary focus is on the movement of the sand bed and only a few have discussed the
turbulent air flow around a sand fence. Since the motion of wind-blown sand is mainly governed by
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Figure 1. lllustration of countermasureagainstwind-blown sanddamagé

the wind flow itself, we performed numerical simulaions of the air flow arourd a sandfence,
including the effect of perneability in the computaion. To includethe effect of the permedility of

anobstackin aflow field in the computation,Kawamob andTanahah haveusedErgun’s equaion

for the numeical estimaton of the body force induced by the smadl-scale flow arourd pebbles.
Toshigamietal.” havepresntedthe useof the pressurdosstermin the numeical simulafon of the

flow arourd an autanatic guidedvehicle. In this modeling the presurelossterm is addedto the

momentumequation as a suppkementarybody force term. Both Ergun’s equaton and the presure
lossterm are propotional to the squareof the velocity, but Ergun’s equationis more conplicated
thanthe pressurdoss model becaseit includes someconsantsdefinedby expeiments. Therdore

we selectedo usethe pressurdossmodd for the numericalsimulationsof the air flow arourd a sand
fence including permeability effects.

Eventhoughmanyturbulent flow simulationshavebeenpresengdin theliterature,the selectionof
the turbulencemodelis still importantin numeical simulaions. In this papera k—¢ modéd is usedfor
the numeical simulation of the turbulent flow, since the presentcalcultion is limited to two-
dimensond computaion. Many calculationsof turbulent flows which usea k—¢ turbulence modé
havebeenpresentédin conjuncton with thefinite differencemethod finite volumemethodandfinite
elementmethod®° According to the literature the standad k—€ turbulencemode givesa very poor
prediction of the turbulent chamacteristics of flows when excessie leves of turbulent enegy are
calculatedin the computation(seee.g.Referencell). This causs a too high turbulentviscosty and
consguenty the compued resuts becomeunredistic. To overcmme this problem a numkber of
modfied k—€ turbulencemodds havebeenpropod by severalauthors’ ! In this studywe usedthe
modified k—€ turbulence model proposedby Kato and Laundetf* becauseof its simplicity and
efficiency. Details of this are descrited in the next secton.

2. THE TURBULENCE MODEL

Fadlowing conventionalturbulentflow analyss, the equaton of coninuity, the Reynolds-areraged

Navier—Stkes equation and the k—¢ moddling equatios for time-demndent, incompessible
turbulentflow are
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HereU; andP arethelocal time-averagéd velocity componentsandpressureaesgectively, k andé are
the turbulent kinetic enegy andits disspation raterespectivéy, Vis the kinematic viscasity, V; is the
turbulenteddyviscosityandG is the turbulenceprodudion term. The valuesof theconstans C , C,,
C, O and g, usedin the turbulence modé are 0-09, 1-44, 192, 1-0 and 1-3 respectively®

Theseformulations, however,are known to give very poor predicions of turbulent charactestics
when excesive generaibn of turbulent energyleadsto a too high turbulentviscosity. To overmme
this, Kato and Laundef! have presenéd a modified k-¢ modd. Let the dimensionlessstrain
parameterS and vorticity paraneter(2be

I E VNS
S = 3 a(J +T| s (7)
\\L _
1, U\
Q= ||3 &_j—&f; . ®)
\\L _

From equaion (6) it is easly verified that the energyprodudion tem is rewritten as
G =S )

Nea a staghationpointthevery high value of Sleadsto excessivdevelsof G. However,thevorticity
parameterQ neara staghation point becomesearly equalto zero, since the deformation is neaty
irrotational. Thusthe replacement

G =vsQ (20)

gives a subsantial diminution of G in the region of a stagnationpoint. This ideahasbeenfound to
give a satisfactoy predicion in the computationof turbulent flows ** The modification is no panacea
for theills of the Bousinessgstressstrainhypothesis,but it doesgreatl improve the behaviourin
sorme flows.
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3. BOUNDARY CONDITIONS

In typical problemssimulaed by the k—€ modd, the wall function methodpropod by Launderand
Spaldind® is used.According to this method the velocity profile in the turbulent bounday layer near
a smoothwall gives the following slip tangential velocity boundaryconditions along the wall:

ut =yt when y* <114, (11)
ut z%cln(9y+) when yT>11-6, (12)
ut =U/u,, y T =hyu/v. (13)

HereU; andh,, arethetangentialvelocity comporentalong thewall andthe meshlength respectivéy
(seeFigure2), K is von Karman’s constanttakento be 0-41, andthe friction velocity u, is obtaned
from the log-law velocity profile

u h,u
Unl =20 (=), (14)

where Uy is the tangential velocity componentalongthe wall asdescribedn Figure2. The normal
velocity componentU,, is also specifiedas

U, =0 (15)

on thewall bounday. The boundaryconditionsfor k and& areimposel loca equilibrium conditions
nearthe wall representedas

_ U _ Ui
k A 3 =i (16)
At theinlet, U;, k and & areimposeal as
U, =U, k =k, e=2 7)

where a ‘hat’ denotesa given value on the bounday. At the exit the tracion-free condtion is
assuned for the meanflow quantities andthe normal gradiens of k and € areimposedaszero.The
bourdary conditionsstatedabovecan be expressedas

—ppéj +(v+w) 71 +W: -n; =0, o =0, N =0, (18)

where n; is the unit vecbor of the direciion caosine.
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4, THREE-STEPTAYL OR/GALERKIN METHOD

The discretizaion straegy usedin this paperis the three-sep Taylor /Galerkin method*®*3n this
straegy the pressurePoissonequaion is derivedin the following manner.Let U; be the known
variables of the velocity field at time t" =t"1 +A (n=1,2,..), where /A is the time increment.
Thenthe unknown velocity variable Ui”"‘l canbe calculatd from the discretizedReynolds-areraged
Navier—Stdkes equatian that is discretzedin time by the forward Euler finite differenceschene:

urtt—ur AU 1o up | aJf
Y = R —|—a( (v+7) +7 . (19)

The incompessibility constraint(1) is forcedto be satsfied in the n4-1 time stageas

aJi"+1

A =0- (20)

After taking the divergenceof both sides of (19) then substituing (20), the following presure
Pdssonequaion canbe derived:

1Pt 1 aup oy Fup aJ, aup
b TH& d A YA +a< a | D5 T (21)
The bounday condtions for this are
~ n+
pri —p, P __1 =7 (22)

Once the pressurdield hasbeencalculaedfrom (21), the velocity UinJrl canbe computedfrom (19),
which canbe treatedas a convedion—diffusion equaion.

Many soluion techiquesfor Burgeis-type equatios have been presentedn the lag decade,
espedlly for the convedion-daminatedflow situaton.**~ *® The Taylor /Galekin methodis one of
the solutionstrategesfor convectiondominagd flow thatwasfirst presened by Selminetal.’” This
methodprovidesa third-order-acurateresut in spaceandtime with goodstability whenthe Courant
numter is less than 1-0. The advanageof usingthe Taylor /Galerkinmetha is thatthe specificaion
of special compuational parametes, often required in other stabilized strategées so that the
computation may be stable, is not required at all. Howeve, this method includes third-order
derivativetermsandthisis undesirdle for linearinterpolationfunctions.We havetherebre proposed
a three-stepTaonr/GaIerkin methodwhich doesnot have higher-orde derivaive termsbut retains
the benefitobtaned from the original Taylor /Galelkin method.Detais of the preentmethodcanbe
foundin Referencel 3.

By making use of the threestep Taylor/GaIerkin method, the momentim equaton, presure
Pdssonequaton andk- and &equatias canbe discretzed asfollows.
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In theseformulatons the variables supersdpted n—+1/3 and n+2/3 standfor the intermedate
variables of correspading variables.The use of the standad Galekin methodwith the bilinear
isoparametricfinite elementyields the following finite element formulations.
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HereM, K, SandH arethe mas matrix, convection matrix, diffusion matrix and gradientmatrix
resgectively. The line integral termsto betreatdasthe natural bounday condtionsareomitted. The
prope treamentof the naturalboundaryconditionsis discussd in Referencel8.

5. RESULTS AND DISCUSSON
5.1. Flow in a trenchtrap

In orderto investigatethe flow behavour in a trench trap, expeimentswere carried out usinga
blow-off type of wind tunnel which was specially desgned for wind-blown sandat the Centil
Researchinstitute of Electronic Powver Indugry, Abiko, Japan The wind tunnelhasa teg secton
110 cm high, 100 cmwide and20 m long. The wind speeds variablefrom 3to 30 m s, controled
by thefrequencyof arotary fan. An ultrasaiic anemoneterarraywith 15 anenometerswasusedfor
measuringthe wind speed The trenchdepthis fixed asH =20 cm in the experimens andthe inflow
wind speedsveresetto 5, 8 and15 m sX. The Reyrolds numkers of the experimens were about
7 X10% 1-1 X10° and2 X 10° resgectivdy. Experimentswith trenchaspectatiosB/H =2, 4, 6, 8
and 10 were carriad out. The definition of the trenchaspectratio anda sketchof the computaional
doman areillustratedin Figure 3. In the numertal simulation the Reynolds numberis fixed as 10°
andsimulaionswith aspectatosB/H =4 and6 wereexamired. In the computationfor B/H =4 we
haveusedthe two finite elemen meshesshownin Figure 4 to checkthe effect of meshrefinement.
MeshA in Figure4 has836 nodesand8160elementsaandbecomegradually finer towardsthe wall
andbottom of the trenchtrap. MeshB has12,425nodesand 12,160 elements andis alsogradually
refined towardsthe bottom,but notrefined at thelevel of the bottomof thetrenchtrap. Figure 5 and6

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291-1306(1997)
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A

Figure 3. Definition sketchof computationaldomainandaspectratio of trench(B/H)

Figure4. Finite elementmeshedor B/H —4: (a) meshA (8365nodesand 8160elements)(b) meshB (12,425nodesand
12,160elemens)

(b)

Figure 5. Streamline of meanvelocity field computedusing (a) meshA and (b) meshB (Re=10", B/H =4)
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(b)

x/H

Figure 7. Comparisorof |U; | for B/H —4: @ experimet , numericalresult

showthe computed streamines and distributions of turbulentkinetic enegy respectivéy using the
two meshesNo cleardifferenceis seenbetweerntheresuts of thedifferentmesheskFigure7 showsa
comparisonof the velocity magnitude | U; | obtaned by expeimentsand numeical simulaions for
B/H =4. The magnitudesf the velocity profilesarenormalzedby theinflow wind speedvalue. The
mainsteamvelocity profilesof expeimentsandsimulationsarein goodagreementwith eachother.
Howeve, the vortexin thetrenchcomputednumericallyis ratherlarge thanthat of expeiments.This
is presume to be cause by the lack of a threedimensioné effect of the flow field in the present
numeical simulaion. Thefinite elemant meshfor B/H =6 is shownin Figure 8(a) andthe computed
streantinesin the trenchareshownin Figure 8(b). Becaug the aspetratio of thetrenchhaschangel
from 4 to 6, the vortex centreof the mainstream in the trenchhasmoved downstreamFigure 8(c)
shows the sane comparisonas Figure 7 for B/H =6. The computeal reslts arein good agreenent
with the expeimentalresultsin the mainstram, but the computedvortexin the trenchis also larger
thanthat of expeiments.The sane reasonasin the caseof B/H —4 is consideed resnsible

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291-1306(1997)
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Figure 8. Finite elementmeshand computedresults(Re=10°, B/H =6). (a) Finite elementmesh (8365 nodesand 8160
elements)(b) Streamlinesof meanvelocity field. (c) Comparisorof |U; | for B/H =6: @ experimett , numerical
result

5.2. Flow around permeab$ sandfences

As mertioned previousy, the presure loss modelling presentecby Toshigani et al.” hasbeen
utilized to include the permeaility effect of the sandfence in the numerical computation. The
presurelossterm usedin this studyis definedby the equatins

A’ K
F= N =_1u.|u. 42
A 5 1Uj1U;, (42)
where Ax is the meshlencth of fence elemantsandK is the coefficient of resistane calculatedfrom
1—uo
K =Cs=——. (@3)

Here ot is the porosity of the fence under consideation and Cs is a coefficient deternined from the
shapeof thefenceandthe Reynotlsnumberof the flow. In this study, Csis fixed as1-3. The presure
lossterm is addedto the momentim equatio asa suppementarybody force term. A sketh of the
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Figure 10. Finite elementmesh(11,476nodesand 11,250elements)

computationaldoman is shown in Figure 9. Figure 10 showsthe finite elementmeshusedin this
conmputation. The total numkers of nodesand elemants are 11,476 and 11,250 respectively. The
simulationswerecarriedout with variousvaluesof the porosityof the fence,®, andthe height of the
fence, h. The Reyrolds numter of all cass is imposeal asRe=10". The compute streaminesand
distributionsof turbulentkinetic enegy of eachcaseare shownin Figures11-14.

The flow field doesnot changemucdh when the porosity of the sandfenceis changel. A drastic
changen flow canbe obseved uponchangng the heightof thefence. This meanghatthe frequeny
of vortex sheddng from the edge of the emtankmentis changingowing to the changein the
resisanceforce of the fence. Another observationis that the changein the frequency of vortex
shedding change the distribution of turbulent kinetic energy, especidly near the slope of the
embankmentwherea smallreciraulation areaof flow canbe observedThis meanghatthe turbulent
viscosity computedrom the modifiedk—€ modé is not produdng a too high turbulent viscosty in the
computationof the counter-grdient presureflow, wherea the standad k- modd alwaysproduces
an unredistic turbulentviscosty. Therefore,the replacenent of the produdion term G by (10) is
working successflly.

6. CONCLUSIONS

Numerical simulationsof the turbulent flow in a trenchtrap andthe flow arourd a permeablesand
fence werecarriedout by thethreestepTaonr/GaIelkin finite elementmethodin conjuncton with a

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291-1306(1997)
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Figure 11. Computedstreamline§Re=10): (a) ®=1-0 (corresponihg to caseof no fence);(b) =05, h=0-2, | =0-0; (c)
o0=0-3, h=0-2, | =0-0
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Figure 12. Distributionsof k (Re=10°): (a) %=1-0; (b) =05, h=0-2, | =0-0; (c) ®=0-3, h=0-2, | =0-0

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291-1306(1997)
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Figure 13. Computedstreamlinef{Re=10"): (a) ¢:=1-0 (corresponihg to caseof no fence);(b) =05, h=1-0, | =0-0; (c)
0=0-3, h=1-0, 1 =00
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Figure 14. Distributionsof k (Re=1(F): (a) &=1-0; (b) %=05, h=1-0, | =0-0; (c) %=0-3, h=1.0, | =0-0

(©1997by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1291-1306(1997)
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modified k—€ turbulencemodé. In the conmputationof the air flow in a trenchtrap the computedand
expeimentalresuls arepradically in goodagreementwith eachother.For engheeringpurpogsthe
above showsthat the presentmethodis applicable to the problem discussd here However, 2D
computation cannot predict the flow situation exacty so far. 3D conputationis requiredin the
numeical simulation of the strict behaviourof the turbulent flow situaion. In the computaton of the
air flow arourd a permeablesandfencethe presurelossmoddling works reamnablywell. The effect
of introducing the productionterm propo®d by the modified k—€ turbulence modé is also verified.

Threedimensonal computdions, comparisonof the computel resuts arourd a sandfencewith
expeimentsand flow analysisarourd the whole countermesaureillustratedin Figure 1 are future
subjctsof this study.
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